Data Structuresand Algorithms Analysis

1. Introduction to Data Structures and Algorithms Analysis

A program is written in order to solve a problemsd@lution to a problem actually
consists of two things:

* A way to organize the data

* Sequence of steps to solve the problem

The way data are organized in a computers mema@aidsto be Data Structure and the

sequence of computational steps to solve a proldesaid to be an algorithm. Therefore,
a program is nothing but data structures plus élgos.

1.1. Introduction to Data Structures

Given a problem, the first step to solve the probig obtaining ones own abstract view,
or mode] of the problem. This process of modeling is abdlbstraction.

Problem

Abstrection

Model I

The model defines an abstract view to the problEms implies that the model focuses
only on problem related stuff and that a programimes to define theropertiesof the
problem.

These properties include

« Thedatawhich are affected and
« Theoperationsthat are involved in the problem.

With abstraction you create a well-defined entitgttcan be properly handled. These
entities define thdata structureof the program.

An entity with the properties just described idexlanabstract data typ€ADT).

1.1.1. Abstract Data Types

An ADT consists of an abstract data structure gretations. Put in other terms, an ADT
is an abstraction of a data structure.

The ADT specifies:
1. What can be stored in the Abstract Data Type
2. What operations can be done on/by the Abstract Dgbe.
For example, if we are going to model employeeamobrganization:
» This ADT stores employees with their relevant htites and discarding
irrelevant attributes.
= This ADT supports hiring, firing, retiring, ... opdi@ns.

A data structure is a language construct that thgrammer has defined in order to
implement an abstract data type.

There are lots of formalized and standard Abstlata types such as Stacks, Queues,
Trees, etc.

Do all characteristics need to be modeled?
Not at all
» It depends on the scope of the model
* It depends on the reason for developing the model

1.1.2. Abstraction

Abstraction is a process of classifying charactiessas relevant and irrelevant for the
particular purpose at hand and ignoring the irr@tewnes.

Applying abstraction correctly is the essence atsssful programming

How do data structures model the world or some gfatte world?

* The value held by a data structure represents spewfic characteristic of the
world

» The characteristic being modeled restricts theiptessgalues held by a data
structure

» The characteristic being modeled restricts theipleseperations to be performed
on the data structure.
Note: Notice the relation between characteristitu®, and data structures

Where are algorithms, then?

1.2. Algorithms

An algorithm is a well-defined computational proaezlthat takes some value or a set of
values as input and produces some value or a seluds as output. Data structures
model the static part of the world. They are undagwhile the world is changing. In
order to model the dynamic part of the world wedheework with algorithms.

Algorithms are the dynamic part of a program’s \@ariodel.

An algorithm transforms data structures from oesto another state in two ways:

* An algorithm may change the value held by a datecstre
» An algorithm may change the data structure itself

The quality of a data structure is related to ity to successfully model the
characteristics of the world. Similarly, the qualif an algorithm is related to its ability
to successfully simulate the changes in the world.

However, independent of any particular world mottet, quality of data structure and
algorithms is determined by their ability to wodgether well. Generally speaking,
correct data structures lead to simple and effiagorithms and correct algorithms lead
to accurate and efficient data structures.

1.2.1. Propertiesof an algorithm

® Finiteness: Algorithm must complete after a finite numberstéps.

* Definiteness. Each step must be clearly defined, having one arlg one
interpretation. At each point in computation, ohewdd be able to tell exactly
what happens next.

®* Sequence: Each step must have a unique defined precedidgsaoceeding
step. The first step (start step) and last step ¢hep) must be clearly noted.

® Feasibility: It must be possible to perform each instruction.
® Correctness: It must compute correct answer for all possiblgal inputs.

® Language Independence: It must not depend on any one programming
language.

® Completeness: It must solve the problem completely.

® Effectiveness: It must be possible to perform each step exawily in a finite
amount of time.

® Efficiency: It must solve with the least amount of computaioresources
such as time and space.

® Generality: Algorithm should be valid on all possible inputs.

® Input/Output: There must be a specified number of input valaes, one or
more result values.

1.2.2. Algorithm Analysis Concepts

Algorithm analysis refers to the process of detamg the amount of computing time
and storage space required by different algorithmether words, it's a process of
predicting the resource requirement of algorithma given environment.

In order to solve a problem, there are many possilgorithms. One has to be able to
choose the best algorithm for the problem at haiigusome scientific method. To
classify some data structures and algorithms ad,gee need precise ways of analyzing
them in terms of resource requirement. The maiouegs are:

* Running Time
* Memory Usage
» Communication Bandwidth

Running time is usually treated as the most impdisance computational time is the
most precious resource in most problem domains.

There are two approaches to measure the efficiehalgorithms:

®* Empirical: Programming competing algorithms andnigythem on different
instances.

* Theoretical: Determining the quantity of resourcegquired mathematically
(Execution time, memory space, etc.) needed by algdrithm.

However, it is difficult to use actual clock-time a consistent measure of an algorithm’s
efficiency, because clock-time can vary based onyntlaings. For example,

» Specific processor speed

» Current processor load

» Specific data for a particular run of the program
o Input Size
0 Input Properties

* Operating Environment

Accordingly, we can analyze an algorithm accordiegthe number of operations
required, rather than according to an absolute atofitime involved. This can show
how an algorithm’s efficiency changes accordinghesize of the input.

1.2.3. Complexity Analysis

Complexity Analysis is the systematic study of tost of computation, measured either
in time units or in operations performed, or in #mount of storage space required.

The goal is to have a meaningful measure that percomparison of algorithms
independent of operating platform.
There are two things to consider:
» Time Complexity: Determine the approximate number of operatiogsired to
solve a problem of size n.
» Space Complexity: Determine the approximate memory required to save
problem of size n.

Complexity analysis involves two distinct phases:

* Algorithm Analysis: Analysis of the algorithm or data structure t@duce a
function T (n) that describes the algorithm in terofi the operations performed in
order to measure the complexity of the algorithm.

* Order of Magnitude Analysis: Analysis of the function T (n) to determine the
general complexity category to which it belongs.

There is no generally accepted set of rules foordalgn analysis. However, an exact
count of operations is commonly used.

1.2.3.1. AnalysisRules:
1. We assume an arbitrary time unit.
2. Execution of one of the following operations takese 1:
* Assignment Operation
» Single Input/Output Operation
* Single Boolean Operations
* Single Arithmetic Operations
* Function Return

3. Running time of a selection statement (if, switeh}the time for the condition
evaluation + the maximum of the running times foe tndividual clauses in the
selection.

4. Loops: Running time for a loop is equal to the nagntime for the statements

inside the loop * number of iterations.
The total running time of a statement inside a grounested loops is the running
time of the statements multiplied by the producthef sizes of all the loops.
For nested loops, analyze inside out.
* Always assume that the loop executes the maximumbeu of iterations
possible.
5. Running time of a function call is 1 for setup +ettime for any parameter
calculations + the time required for the executbthe function body.
Examples:
1. int count(){
int k=0;
cout<< “Enter an integer”;
cin>>n;
for (i=0;i<n;i++)
k=k+1;
return 0;}

Time Unitsto Compute

1 for the assignment statement: int k=0

1 for the output statement.

1 for the input statement.

In the for loop:
1 assignmenp+1 tests, anch increments.
n loops of 2 units for an assignment, and an aatditi
1 for the return statement.

T (n)=1+1+1+(1+n+1+n)+2n+1 = 4n+6 = O(n)

2. int total(int n)
{
int sum=0;
for (int i=1;i<=n;i++)
sum=sum-+1;
return sum;
}
Time Units to Compute
1 for the assignment statement: int sum=0
In the for loop:
1 assignmenp+1 tests, anch increments.
n loops of 2 units for an assignment, and an aatditi
1 for the return statement.

T (n)=1+ (1+n+1+n)+2n+1 = 4n+4 = O(n)

3. void func()
{
int x=0;
int i=0;
int j=1;
cout<< “Enter an Integer value”;
cin>>n;
while (i<n){
X++;
i++;
}
while (j<n)
.
J++'

Time Units to Compute
1 for the first assignment statement: x=0;
1 for the second assignment statement: i=0;
1 for the third assignment statement: j=1;
1 for the output statement.
1 for the input statement.
In the first while loop:
n+1 tests
n loops of 2 units for the two increment (additiopecations
In the second while loop:
n tests
n-1 increments

T (nN)=1+1+1+1+1+n+1+2n+n+n-1 = 5n+5 = O(n)

4. int sum (int n)
{
int partial_sum = 0;
for (inti=1;i<=n;i++)
partial_sum = partial_sum +(i * i * i);
return partial_sum;

}

Time Units to Compute

1 for the assignment.

1 assignmenn+1 tests, andh increments.

nloops of 4 units for an assignment, an additaomd two multiplications.
1 for the return statement.

T (n)=1+(1+n+1+n)+4n+1 = 6n+4 = O(n)

1.2.3.2. Formal Approach to Analysis
In the above examples we have seen that analyaibitxomplex. However, it can be

simplified by using some formal approach in whigls& we can ignore initializations,
loop control, and book keeping.

for Loops: Formally

® general, a for loop translates to a summatidre iidex and bounds of the
summation are the same as the index and bounds &bt loop.

for (int i
sum
}

1,1 <= N;i++){
sum +i;

1= N

1

-MZ

® Suppose we count the number of additions that@ane.dThere is 1 addition per
iteration of the loop, hend¥ additions in total.

Nested L oops: Formally

® Nested for loops translate into multiple summatjamee for each for loop.

for (inti=1;i<=N;i++){
for (intj=1;j<=M;j++){ N M N

sum = sum+i+j; ZZZZZZM = 2MN

} i=1 j=1 i=1

}

® Again, count the number of additions. The outer miation is for the outer for
loop.

Consecutive Statements: Formally

® ,ddthe running times of the separate blocks ofr ymae

for (inti=1;i<=N;i++) {
sum = sum-+i;
} N N N ~ ,
for (inti=1;i<=N;i++){ Zl"‘ ZZZ =N+2N
for (intj=1;j <= N;j++) { i=1 i=1 j=1
sum = sum+i+j;
}
}

Conditionals: Formally
° If (test) s1 else s2: Compute the maximum of tmaimyg time for s1 and s2.
if (test==1) {

for (inti=1;i<= N;i++) { N

N N
= i 1, 2
. SuUm = sum +i max iz:l Z z

i=1 j=1

else for (inti=1;i<= N;i++) {
for (intj=1;j<= N;j++){ max (N,ZNZ):ZN2
sum = sum +i+j;

i3

Example:

Suppose we have hardware capable of executihpdBuctions per second. How long
would it take to execute an algorithm whose comipfdxnction was:

T (n) = 2rf on an input size of n=1@
The total number of operations to be performed ddel T (16):

T(10%) = 2%(10°%)% =2*10'°
The required number of seconds
required would be given by

T(AF)/10° so:

Running time =2*18/10° = 2*10™
The number of seconds per day is 86,400 so tlabast 231,480 days (634 years).

Exercises
Determine the run time equation and complexityaufieof the following code segments.

1. for (i=0;i<n;i++)
for (j=0;j<n; j++)
sum=sum-+i+j;

2. for(int i=1; i<=n; i++)
for (int j=1; j<=i; j++)
sum++;

What is the value of the sum if n=207?

3. int k=0;
for (int i=0; i<n; i++)
for (int j=i; j<n; j++)
k++;
What is the value of k when n is equal to 20?
4. int k=0;
for (int i=1; i<n; i*=2)
for(int j=1; j<n; j++)
k++;
What is the value of k when n is equal to 20?

5. int x=0;
for(int i=1;i<n;i=i+5)
X++;
What is the value of x when n=25?
6. int x=0;
for(int k=n;k>=n/3;k=Kk-5)
X++;

What is the value of x when n=25?

7. int x=0;
for (int i=1; i<n;i=i+5)
for (int k=n;k>=n/3;k=k-5)
X++;
What is the value of x when n=25?

8. int x=0;
for(int i=1;i<n;i=i+5)
for(int j=0;j<i;j++)
for(int k=n;k>=n/2;k=k-3)
X++;

What is the correct big-Oh Notation for the abowdecsegment?

1.3. Measures of Times

In order to determine the running time of an altponi it is possible to define three
functionsTyes(N), Tavg(N) andTwors(N) as the best, the average and the worst case ginnin
time of the algorithm respectively.

Average Case @g: The amount of time the algorithm takes on aretage” set of
inputs.

Worst Case ({orsy): The amount of time the algorithm takes on thestvpossible set of
inputs.

Best Case (ks): The amount of time the algorithm takes on thalgst possible set of
inputs.

We are interested in the worst-case time, sinpeoitides a bound for all input — this is
called the “Big-Oh” estimate.

1.4. Asymptotic Analysis

Asymptotic analysis is concerned with how the ragrime of an algorithm increases
with the size of the input in the limit, as theesaf the input increases without bound.

There are five notations used to describe a runtiimg function. These are:
* Big-Oh Notation (O)
* Big-Omega Notation()

* Theta Notation®)
» Little-o Notation (0)

10

» Little-Omega Notationc)

1.4.1. The Big-Oh Notation

Big-Oh notation is a way of comparing algorithmsl @used for computing the
complexity of algorithms; i.e., the amount of titat it takes for computer program to
run . It's only concerned with what happens fonvaiarge value of n. Therefore only
the largest term in the expression (function) isdesl. For example, if the number of
operations in an algorithm i€ — n, n is insignificant compared 1 for large values of

n. Hence tha term is ignored. Of course, for small values at may be important.
However, Big-Oh is mainly concerned with large e wfn.

Formal Definition: f (n)= O (g (n)) if there exist ¢, k %" such that for all B k, f (n) <
c.g (n).

Examples: The following points are facts that you can ugeBig-Oh problems:
 1<=n forall n>=1
« n<=rffor all n>=1
« 2"<=n!for all n>=4
* logyn<=n for all n>=2
* n<=nlogn for all n>=2
1. f(n)=10n+5 and g(n)=n. Show that f(n) is O(g(n))
To show that f(n) is O(g(n)) we must show that ¢ants ¢ and k such that
f(n) <=c.g(n) for all n>=k
Or 10n+5<=c.n for all n>=k
Try c=15. Then we need to show that 10n+5<=15n
Solving for n we get: 5<5n or 1<=n.
So f(n) =10n+5 <=15.g(n) for all n>=1.
(c=15,k=1).
2. f(n) = 3rf +4n+1. Show that f(n)=Ofh
4n <=4 for all n>=1 and 1<=nfor all n>=1

3rf +4n+1<=3/+4r*+r? for all n>=1

11

<=8hfor all n>=1
So we have shown that f(n)<=8ior all n>=1
Therefore, f (n) is O (c=8,k=1)
Typical Orders

Here is a table of some typical cases. This uggmikbhms to base 2, but these are simply
proportional to logarithms in other base.

N O(1) | O(log n) o(n) O(n log n) on o(r?)

1 1 1 1 1 1 1

2 1 1 2 2 4 8

4 1 2 4 8 16 64

8 1 3 8 24 64 512

16 1 4 16 64 256 4,096

1024 |1 10 1,024 10,240 1,048,576 1,073,741,824

Demonstrating that a function f(n) is big-O of adtion g(n) requires that we find
specific constants ¢ and k for which the inequdlityds (and show that the inequality
does in fact hold).

Big-O expresses ampper boundn the growth rate of a function, for sufficientéyge
values of n.

An upper bounds the best algorithmic solution that has beemdbior a problem.
“ What is the best that we know we can do?”

Exercise

f(n) = (3/2)rf+(5/2)n-3
Show that f(n)= O®

In simple words, f (n) =O(g(n)) means that the dtovate of f(n) is less than or equal to
g(n).

1.4.1.1. Big-O Theorems

For all the following theorems, assume that f(rg fsinction of n and that k is an
arbitrary constant.

12

Theorem 1: kis O(1)
Theorem 2: A polynomial is O(the term containing the highpstver of n).

Polynomial’'s growth rate is determined by the legdierm

« If f(n) is a polynomial of degres then f(n) is O(n)
In general, f(n) is big-O of the dominant term @f)f
Theorem 3: k*f(n) is O(f(n))
Constant factors may be ignored

E.g. f(n) =7#+3rf+5n+1000 is O(H

Theorem 4(Transitivity): If f(n) is O(g(n))and g(n) is O(h(n)), then f(is) O(h(n)).

Theorem 5: For any base b, lgfn) is O(logn).
All logarithms grow at the same rate
logon isO(loggn) (b, d > 1

Theorem 6: Each of the following functions is big-O of itscaessors:
k
logyn
n
nlog,n
n2
n to higher powers
2n
3n
larger constants to the nth power
n!

nn

f(n)= 3nlogn + 4 logn+2 is O(nlogn) and)(RA) and O(?)
1.4.1.2. Propertiesof the O Notation
Higher powers grow faster

en’ [is1OO(r) if 0<=r<=s

13

Fastest growing term dominates a sum
* If f(n) is O(g(n)), then f(n) + g(n) is O(g)
E.g 5f +6rf is O ()

Exponential functions grow faster than powers, i.égs 1710(b') OOb>1andk>=0
E.g.f’ is O(1.08

Logarithms grow more slowly than powers
*logpn [lisI1O(NK)O [Tb>1and k>=0
E.g. logn is O(19

1.4.2. Big-Omega Notation

Just as O-notation provides an asymptotic uppenthon a functionQ2 notation
provides an asymptotic lower bound.

Formal Definition: A function f(n) i€2(g (n)) if there exist constants ¢ and k2+

such that
f(n) >=c. g(n) for all n>=k.

f(n)= Q(g (n)) means that f(n) is greater than or equaloime constant multiple of g(n)
for all values of n greater than or equal to some k

Example: If f(n) =n*then f(n)=Q(n)

In simple terms, f(n)£X(g (n)) means that the growth rate of f(n) is ¢ge#hat or equal
to g(n).

1.4.3. Theta Notation

A function f (n) belongs to the set &f(g(n)) if there exist positive constants c1 and c2
such that it can be sandwiched between c1.g(ntamgn), for sufficiently large values
of n.

Formal Definition: A function f (n) i® (g(n)) if it isbothO(g(n)) andQ (g(n)). In
other words, there exist constants c1, c2, and &ue that c1.g (n)<=f(n)<=c2. g(n) for
alln>=k

If f(n)= © (g(n)), then g(n) is an asymptotically tight boundf(n).

In simple terms, f(n)® (g(n)) means that f(n) and g(n) have the sameafageowth.

14

Example:
1. If f(n)=2n+1, then f(n) ® (n)
2. f(n) =2rfthen

f(n)=0(rf)

f(n)=0(")

f(n)=0(?)

All these are technically correct, but the lastrespgion is the best and tight one. Since
2r*and 1f have the same growth rate, it can be writtenr@s ®(n?).

1.4.4. Little-o Notation
Big-Oh notation may or may not be asymptoticalghti for example:
2r* = O(rf)
=0(R)
f(n)=o(g(n)) means for all c>0 there exists som® kuch that f(n)<c.g(n) for all n>=k.
Informally, f(n)=o0(g(n)) means f(n) becomes insigant relative to g(n) as n approaches
infinity.
Example: f(n)=3n+4 is o(A)
In simple terms, f(n) has less growth rate compéveg(n).
g(n)= 2rf g(n) =o(rf), O(rf), g(n) is not o(A.
1.4.5. Little-Omega (w notation)

Little-omega (v) notation is to big-omegd&)) notation as little-o notation is to Big-Oh
notation. We use notation to denote a lower bound that is not asgtigally tight.

Formal Definition: f(n)= w (g(n)) if there exists a constant no>0 such tkat 6.
g(n)<f(n) for all n>=k.

Example: 2rf=w(n) but it's notw (n?).

1.5.Relational Properties of the Asymptotic Notations

15

Transitivity
e if f(n)=G(g(n)) and g(n)=O(h(n)) then f(n)®(h(n)),
* iff(n)=0(g(n)) and g(n)= O(h(n)) then f(n)=0(h(n))
e if f(n)=Q(g(n)) and g(n)=X2(h(n)) then f(n)£ (h(n)),
e if f(n)=0(g(n)) and g(n)= o(h(n)) then f(n)=o(h(npnd
e if f(n)=w (g(n)) and g(n)=v(h(n)) then f(n)=o (h(n)).

Symmetry
¢ f(n)=0©(g(n)) if and only if g(n)O(f(n)).
Transpose symmetry

¢ f(n)=0(g(n)) if and only if g(n)L(f(n)),
¢ f(n)=0(g(n)) if and only if g(n)sx(f(n)).

Reflexivity

e f(n)=0(f(n)),

* f(n)=0(f(n)),

o f(n)=Q(f(n)).
2. Simple Sorting and Sear ching Algorithms
2.1. Searching

Searching is a process of looking for a specifrednt in a list of items or determining
that the item is not in the list. There are twoensearching algorithms:

¢ Sequential Search, and
* Binary Search

2.1.1. Linear Search (Sequential Search)
Pseudocode

Loop through the array starting at the first eletnettil the value of target matches one
of the array elements.

If a match is not found, return —1.

Time is proportional to the size of input) @nd we call this time complexi(n).

16

Example I mplementation:

int Linear_Search(int list[], int key)
{
int index=0;
int found=0;
dof
if(key==list[index])
found=1;
else
index++;
twhile(found==0&&index<n);
if(found==0)
index=-1;
return index;

}

2.1.2. Binary Search

This searching algorithms works only on an ordéistd
The basic idea is:

* Locate midpoint of array to search
¢ Determine if target is in lower half or upper halfan array.
o Ifin lower half, make this half the array to sdarc
o If in the upper half, make this half the array ¢auch
* Loop back to step 1 until the size of the arragdarch is one, and this element
does not match, in which case return —1.

The computational time for this algorithm is pragoamal to log n. Therefore the time
complexity is @log n)

Example I mplementation:
int Binary_Search(int list[],int k)

int left=0;

int right=n-1,;

int found=0;

dof

mid=(left+right)/2;

if(key==list[mid])
found=1;

else{
if(key<list[mid])

17

right=mid-1,
else
left=mid+1;

}
}while(found==0&&Ileft<right);
if(found==0)

index=-1;
else

index=mid;
return index;

}

2.2. Sorting Algorithms

Sorting is one of the most important operationsggoered by computers. Sorting is a
process of reordering a list of items in either&asing or decreasing order. The

following are simple sorting algorithms used totsonall-sized lists.

* Insertion Sort
e Selection Sort
e Bubble Sort

18

2.2.1. Insertion Sort

The insertion sort works just like its name suggiest inserts each item into its proper
place in the final list. The simplest implementataf this requires two list structures - the
source list and the list into which sorted itenes iaserted. To save memory, most
implementations use an in-place sort that workebying the current item past the
already sorted items and repeatedly swapping It thi¢ preceding item until it is in
place.

It's the most instinctive type of sorting algorithihe approach is the same approach that
you use for sorting a set of cards in your handil&\fiiaying cards, you pick up a card,
start at the beginning of your hand and find theeelto insert the new card, insert it and
move all the others up one place.

Basic | dea:
Find the location for an element and move all cthgr, and insert the element.
The process involved in insertion sort is as fobow

1. The left most value can be said to be sorted wedé itself. Thus, we don’t need
to do anything.

2. Check to see if the second value is smaller thariitst one. If it is, swap these
two values. The first two values are now relativebyted.

3. Next, we need to insert the third value in to thlatively sorted portion so that
after insertion, the portion will still be relatiyesorted.

4. Remove the third value first. Slide the second @atumake room for insertion.
Insert the value in the appropriate position.

5. Now the first three are relatively sorted.

6. Do the same for the remaining items in the list.

I mplementation

void insertion_sort(int list[]){
int temp;
for(int i=1;i<n;i++){
temp=list[i];
for(int j=i; >0 && tempx<list[j-1];j--)
{ /I work backwards through the grfanding where temp should go
list[j]=list[j-1];
list[j-1]=temp;
Y/end of inner loop
}lend of outer loop
Hlend of insertion_sort

19

Analysis

How many comparisons?
1+2+3+...+(n-1)= OH

How many swaps?
1+2+3+...+(n-1)= O

How much space?

In-place algorithm
2.2.2. Selection Sort
Basic |dea:

* Loop through the array from i=0 to n-1.
» Select the smallest element in the array fromn to
» Swap this value with value at position i.

I mplementation:

void selection_sort(int list[])
{
int i,j, smallest;
for(i=0;i<n;i++){
smallest=i;
for(j=i+1;j<n;j++){
if(list[j]<list[smallest])
smallest=j;

}/end of inner loop
temp=list[smallest];
list{[smallest]=list[i];
list[i]=temp;

} //lend of outer loop

Hlend of selection_sort

20

Analysis

How many comparisons?
(n-1)+(n-2)+...+1= O(A)
How many swaps?
n=0(n)

How much space?

In-place algorithm

2.2.3. Bubble Sort

Bubble sort is the simplest algorithm to implemand the slowest algorithm on very
large inputs.

Basic | dea;

» Loop through array from i=0 to n and swap adjaed@inents if they are out of
order.

I mplementation:
void bubble_sort(list[])
{
int i,j,temp;
for(i=0;i<n; i++){
for(j=n-1;j>i; j--}{
if(list[j]<list[j-1]1{
temp=list([j];
list[j]=list[j-1];
list[j-1]=temp;
HIswap adjacent elements
Hlend of inner loop
Hlend of outer loop
Hlend of bubble_sort

Analysis of Bubble Sort
How many comparisons?

(n-1)+(n-2)+...+1= O(A)

21

How many swaps?
(n-1)+(n-2)+...+1= O(A)
Space?

In-place algorithm.

General Comments

Each of these algorithms required passes: each pass places one item in its correct
place. Thé" pass makes eitheor n - i comparisons and moves. So:

T{n) =14+2+4+3+4+...4{n-1)

n—1

=E£

i=1

= 5(n-1)

or O(%). Thus these algorithms are only suitable for prablems where their simple
code makes them faster than the more complex doitie @ ¢ logn) algorithm. As a rule
of thumb, expect to find an ®(ogn) algorithm faster fon>10 -but the exact value
depends very much on individual machines!

Empirically it's known that Insertion sort is ovvice as fast as the bubble sort and is
just as easy to implement as the selection soghdmt, there really isn't any reason to use
the selection sort - use the insertion sort instead

If you really want to use the selection sort fomgoreason, try to avoid sorting lists of
more than a 1000 items with it or repetitively sagtlists of more than a couple hundred
items.

3. Data Structures

3.1. Structures
Structures are aggregate data types built usimgezies of primitive data types.

Structure are defined using the struct keyword:
E.g. struct Time{

int hour;

int minute;

int second;

3

22

The struct keyword creates a new user definedtgptathat is used to declare variables
of an aggregate data type.

Structure variables are declared like variablestioér types.
Syntax: struct <structure tag> <variable name>;
E.g. struct Time timeObject,

struct Time *timeptr;

3.1.1. Accessing Members of Structure Variables
The Dot operator (.)to access data members of structure variables.

The Arrow operator (->)10 access data members of pointer variables pgind the
structure.

E.g. Print member hour of timeObject and timeptr.
cout<< timeObject.hour; or
cout<<timeptr->hour;

TIP: timeptr->hour is the same as (*timeptr).hour.

The parentheses is required since (*) has lowereplence than (.).

3.1.2. Sdf-Referential Structures
Structures can hold pointers to instances of themase
struct list{

char name[10];

int count;
struct list *next;

|3
However, structures cannot contain instances oh$iedves.
3.2. Singly Linked Lists

Linked lists are the most basic self-referentialcures. Linked lists allow you to have a
chain of structs with related data.

23

Array vs. Linked lists

Arrays aresimpleandfastbutwe nust specify their size at construction time. Thas s
own drawbacks. If you construct an array with sfac@e, tomorrow you may need
n+1.Here comes a need for a more flexible system.

Advantagesof Linked Lists

Flexible space use by dynamically allocating sgaceach element as needed. This
implies that one need not know the size of tharnistdvance. Memory is efficiently
utilized.

A linked list is made up of a chain of nodes. Eaollecontains:

* the data item, and
* a pointer to the next node

3.2.1. Creating Linked Listsin C++

A linked list is a data structure that is builtdfiestructures and pointers. It forms a chain
of "nodes" with pointers representing the linksha chain and holding the entire thing
together. A linked list can be represented by grdia like this one:

Start
\Name: Fred HMarme: Sue Mame: Joe Harme: Zoe
Ao 34 Ager 27 Loe 48 Lo 30
Height: 1.7 Heioht: 1.2 Height: 1.4 Heioht: 1.3

NULL
This linked list has four nodes in it, each withnk to the next node in the series. The
last node has a link to the special value NULL,achny pointer (whatever its type) can
point to, to show that it is the last link in theatn. There is also another special pointer,
called Start (also called head), which points ®ftst link in the chain so that we can
keep track of it.

3.2.2. Defining the data structurefor alinked list

The key part of a linked list is a structure, whigilds the data for each node (the name,
address, age or whatever for the items in the hsi)l, most importantly, a pointer to the
next node. Here we have given the structure opeay node:

struct node

{ char name[20]; // Nameof up to 20 letters

int age
float height; //In metres
node *nxt;// Pointer to next node

¥

24

struct node *start_ptr = NULL;

The important part of the structure is the linedbefthe closing curly brackets. This gives
a pointer to the next node in the list. This isoinéy case in C++ where you are allowed
to refer to a data type (in this casee) before you have even finished defining it!

We have also declared a pointer cabiect_ptr that will permanently point to the start of
the list. To start with, there are no nodes inligtewhich is whystart_ptr is set to NULL.

3.2.3. Adding a nhodeto thelist

The first problem that we face is how to add a nodde list. For simplicity's sake, we
will assume that it has to be added to the endefist, although it could be added
anywhere in the list (a problem we will deal wigtdr on).

Firstly, we declare the space for a pointer itemh assign a temporary pointer to it. This
is done using theew statement as follows:

temp = new node;

We can refer to the new node*asnp, i.e." the node that temp pointsto". When the
fields of this structure are referred to, brackets be put round theemp part, as
otherwise the compiler will think we are tryingrfer to the fields of the pointer.
Alternatively, we can use the arrow pointer notatio

That's what we shall do here.

Having declared the node, we ask the user tafilhe details of the person, i.e. the
name, age, address or whatever:

cout << " Please enter the name of the person: ";
cin >> temp->name;,

cout << " Please enter the age of theperson : ";
cin >> temp->age;

cout << " Please enter the height of theperson: ";
cin >> temp->height;

temp->nxt = NULL;

The last line sets the pointer from this node ®rtbxt to NULL, indicating that this

node, when it is inserted in the list, will be thst node. Having set up the information,
we have to decide what to do with the pointersc@ifrse, if the list is empty to start

25

with, there's no problem - just set the Start it point to this node (i.e. set it to the
same value as temp):
if (start_ptr == NULL)
start_ptr = temp;

It is harder if there are already nodes in the Iisthis case, the secret is to declare a
second pointetegmp2, to step through the list until it finds the lastde.

temp 2
start_ptr \L
y —NULL
. . . .

temp2 = start_ptr;
Il We know thisisnot NULL - list not empty!
while (temp2->nxt = NULL)
{ temp2 =temp2->nxt; // Moveto next link in chain

}
The loop will terminate whetemp2 points to the last node in the chain, and it knows
when this happened becausenikepointer in that node will point to NULL. When iak
found it, it sets the pointer from that last nodgoint to the node we have just declared:

temp2->nxt = temp;

start._ptr teln/pE teln/p
Mew
Hode | [ZHULL
Added
| | | | |

The linktemp2->nxt in this diagram is the link joining the last twodes. The full code
for adding a node at the end of the list is shoeloww, in its own little function:
void add_node at_end ()
{ node*temp, *temp2; // Temporary pointers

/I Reserve space for new node and fill it with data
temp = new node;

cout << " Please enter the name of the person: ";
cin >> temp->name;

cout << " Please enter the age of the person : ";
cin >> temp->age;

cout << " Please enter the height of the person: ";

26

cin >> temp->height;
temp->nxt = NULL;

Il Set up link to thisnode
if (start_ptr == NULL)
start_ptr = temp;
else
{ temp2 = start_ptr;
Il We know thisisnot NULL - list not empty!
while (temp2->nxt |= NULL)
{ temp2 =temp2->nxt;
I Moveto next link in chain
}
temp2->nxt = temp;
}
}
3.2.4. Displaying thelist of nodes

Having added one or more nodes, we need to disipéalyst of nodes on the screen. This
is comparatively easy to do. Here is the method:

Set a temporary pointer to point to the same tamthe start pointer.

If the pointer points to NULL, display the mess&dged of list" and stop.
Otherwise, display the details of the node poinitebly the start pointer.

Make the temporary pointer point to the same thisghenxt pointer of the node
it is currently indicating.

5. Jump back to step 2.

PN E

The temporary pointer moves along the list, displgyhe details of the nodes it comes
across. At each stage, it can get hold of the nede in the list by using thext pointer
of the node it is currently pointing to. Here ig ii++ code that does the job:
temp = start_ptr;
do
{ if (temp ==NULL)
cout <<" End of list" << endl;
else
{ /I Display detailsfor what temp pointsto
cout <<"Name: " << temp->name << endl;
cout <<"Age:" <<temp->age<<endl;
cout << "Height : " << temp->height << endl;
cout << endl; //Blank line

Il Moveto next node (if present)
temp = temp->nxt;

}
} while (temp != NULL);

27

Check through this code, matching it to the metisidd above. It helps if you draw a
diagram on paper of a linked list and work throtigd code using the diagram.

3.2.5. Navigating through thelist

One thing you may need to do is to navigate thrahgHist, with a pointer that moves
backwards and forwards through the list, like ateinpointer in an array. This is
certainly necessary when you want to insert ortdedenode from somewhere inside the
list, as you will need to specify the position.

We will call the mobile pointesurrent. First of all, it is declared, and set to the same
value as thetart_ptr pointer:

node *current;

current = start_ptr;
Notice that you don't need to set current equieé@ddressof the start pointer, as they

are both pointers. The statement above makes tbhémpbint to the same thing:
start current

N S

ete.

. ._

It's easy to get the current pointer to point @ lext node in the list (i.e. move from left
to right along the list). If you want to move curt@long one node, use the nxt field of
the node that it is pointing to at the moment:

current = current->nxt;

In fact, we had better check that it isn't pointiadghe last item in the list. If it is, then
there is no next node to move to:
if (current->nxt == NULL)
cout <<"You areat theend of thelist." << endl;
else
current = current->nxt;

Moving the current pointer back one step is elitthrder. This is because we have no
way of moving back a step automatically from theeat node. The only way to find the
node before the current one is to start at thenmégy, work our way through and stop
when we find the node before the one we are consglat the moment. We can tell
when this happens, as tive pointer from that node will point to exactly thense place

in memory as the current pointer (i.e. the currerge).

Star previou: curren

[N [N ‘
,r/ \\\ //’ \\\ Sto l
) , A s S

JJJJ

28

First of all, we had better check to see if the@nirnode is also first the one. If it is, then
there is no "previous" node to point to. If notechk through all the nodes in turn until we
detect that we are just behind the current onee(kifbantomime - "behind you!")
if (current == start_ptr)
cout <<"You areat thestart of thelist" << endl;
else
{ node*previous;, // Declarethe pointer
previous = start_ptr;

while (previous->nxt != current)
{ previous = previous->nxt;
}

current = previous,

}

The else clause translates as follows: Declarenadeary pointer (for use in this else
clause only). Set it equal to the start pointet tiAé time that it is not pointing to the node
before the current node, move it along the linec&tne previous node has been found,
the current pointer is set to that node - i.e.aves back along the list.

Now that you have the facility to move back andtpyou need to do something with it.
Firstly, let's see if we can alter the detailstfat particular node in the list:

cout << " Please enter the new name of the person: ";

cin >> current->name;

cout << " Please enter the new age of theperson: ";

cin >> current->age;

cout << " Please enter the new height of theperson: ";

cin >> current->height;

The next easiest thing to do is to delete a nagla the list directly after the current
position. We have to use a temporary pointer totoi the node to be deleted. Once this
node has been "anchored"”, the pointers to the renganodes can be readjusted before
the node on death row is deleted. Here is the seguef actions:

1. Firstly, the temporary pointer is assigned to tbdenafter the current one. This is
the node to be deleted:

current temp

A
S S S) S [-

29

2. Now the pointer from the current node is made apiog the next node and
point to the one after that:

curren temg

l l NULL

S S i

3. The last step is to delete the node pointed tteday.

Here is the code for deleting the node. It inclualésst at the start to test whether the
current node is the last one in the list:
if (current->nxt == NULL)
cout << " Thereisno node after current” << endl;
else
{ node *temp;
temp = current->nxt;
current->nxt = temp->nxt; // Could be NULL
delete temp;

}

Here is the code tadd a node after the current one. This is done sifgjldut we haven't
illustrated it with diagrams:
if (current->nxt == NULL)
add_node_at_end();
else
{ node *temp;
new temp;
get_details(temp);
Il M ake the new node point to the same thing as
/l the current node
temp->nxt = current->nxt;
Il Make the current node point to the new link
I/l in the chain
current->nxt = temp;

}

We have assumed that the functin _node at_end() is the routine for adding the node to
the end of the list that we created near the tapisefsection. This routine is called if the
current pointer is the last one in the list sortbes one would be added on to the end.

Similarly, the routineyet_temp(temp) is a routine that reads in the details for the nede
similar to the one defined just above.

30

...and so ...

3.2.6. Deleting a node from the list

When it comes to deleting nodes, we have threeceboDelete a node from the start of
the list, delete one from the end of the list, elete one from somewhere in the middle.
For simplicity, we shall just deal with deletingeofrom the start or from the end.

When a node is deleted, the space that it toolhapld be reclaimed. Otherwise the
computer will eventually run out of memory spackislis done with theelete
instruction:

deletetemp; // Releasethe memory pointed to by temp

However, we can't just delete the nodes willy-néltyit would break the chain. We need
to reassign the pointers and then delete the nioithe &ast moment. Here is how we go
about deleting the first node in the linked list:

temp = start_ptr; // Makethetemporary pointer
// identical to the start pointer

start_pfr

l

ST

tetrip
Now that the first node has been safely taggedh@owe can refer to it even when the
start pointer has been reassigned), we can mowadltepointer to the next node in the
chain:

start_ptr = start_ptr->nxt; // Second nodein chain.
start pir

l
ST

tetmng
deletetemp; // Wipeout original start node

31

statt feir

ol -
- - etc.
— POOF! —
--;, Ill . - ra— pa—

tetrp

Here is the function that deletes a node from the:s

void delete start_node()
{ node *temp;
temp = start_ptr;
start_ptr = start_ptr->nxt;
delete temp;
}

Deleting a node from the end of the list is hardsrthe temporary pointer must find
where the end of the list is by hopping along fithie start. This is done using code that
is almost identical to that used to insert a nddeeaend of the list. It is necessary to
maintain two temporary pointergmpl andtemp2. The pointetempl will point to the last
node in the list angkmp2 will point to the previous node. We have to keggk of both
as it is necessary to delete the last node and thatedy afterwards, to set thet pointer
of the previous node to NULL (it is now the newtlaede).

1. Look at the start pointer. If it is NULL, then thst is empty, so print out a "No
nodes to delete" message.

2. Maketemp1 point to whatever the start pointer is pointing to

3. If the nxt pointer of what temp1 indicates is NULL, then veefound the last node
of the list, so jump to step 7.

4. Make another pointetemp2, point to the current node in the list.

5. Maketemp1 point to the next item in the list.

6. Go to step 3.

7. If you get this far, then the temporary pointemp1, should point to the last item
in the list and the other temporary pointemp2, should point to the last-but-one
item.

8. Delete the node pointed to ynp1.

9. Mark thenxt pointer of the node pointed to Bynp2 as NULL - it is the new last
node.

Let's try it with a rough drawing. This is alwayg@od idea when you are trying to
understand an abstract data type. Suppose we wvestdte the last node from this list:

32

start pir

LT

Firstly, the start pointer doesn't point to NULD, \we don't have to display a "Empty list,
wise guy!" message. Let's get straight on with 3teget the pointaempl to the same as
the start pointer:

start pir

EhmhE R

temp 1

Thenxt pointer from this node isn't NULL, so we haventirid the end node. Instead, we
set the pointetemp2 to the same node asnpl
start_pir

l
AT

tetnp 2 temp 1

and then move templ to the next node in the list:
start_pfr

l
AT AT

tetnp 2 tetnp 1

Going back to step 3, we see that temp1l still dopsimt to the last node in the list, so
we make temp2 point to what temp1 points to

33

start_ptr

A 4
A 4

> J—' NULL
° $c ° ——

temp 2 templ

andtempl is made to point to the next node along:

start ptr

i
AT

termp 2 tetmp 1

Eventually, this goes on untdmpl really is pointing to the last node in the listftw
temp2 pointing to the penultimate node:

‘ . ‘ ._j NULL
T |

temp 2 templ

start_ptr

A\ 4
A 4

A 4

Now we have reached step 8. The next thing to to delete the node pointed to by
templ

start pir

|

l o
— POOF! —
- .

— ~— *— Ayt

ternp 2 tetmp 1

34

and set thext pointer of whatemp2 indicates to NULL.:

start_ptr

l
Y T

ternp 2

We suppose you want some code for all that! Altipen

void delete_end _node()
{ node *templ, *temp2,
if (start_ptr == NULL)
cout << " Thelist isempty!" << endl;
else
{ templ = start_ptr;
while (templ->nxt != NULL)
{ temp2 = temp1;
templ = templ->nxt;
}
delete templ;
temp2->nxt = NULL;
}

The code seems a lot shorter than the explanation!

Now, the sharp-witted amongst you will have spotgatoblem. If the list only contains
one node, the code above will malfunction. Thigdsause the function goes as far as the
templ = start_ptr statement, but never gets as far as settingnwy2. The code above has

to be adapted so that if the first node is alsddbe(has a NULLoxt pointer), then it is
deleted and theart_ptr pointer is assigned to NULL. In this case, theraa need for the
pointertemp2:

void delete_end _node()
{ node *temp1, *temp2;
if (start_ptr == NULL)
cout << " Thelistisempty!" << endl;
else
{ templ = start_ptr;
if (templ->nxt ==NULL) // Thispartisnew!
{ deletetempl;
start_ptr = NULL;
}

35

else
{ while (temp1->nxt !=NULL)
{ temp2 = temp1,;
templ = templ->nxt;
}
deletetempl;
temp2->nxt = NULL;
}
}

}
3.3. Doubly Linked Lists

That sounds even harder than a linked list! Wellpu've mastered how to do singly
linked lists, then it shouldn't be much of a leagoubly linked lists

A doubly linked list is one where there are linksnh each node in both directions:
current position

/

Diata Diata Data Diata

| | - | = ®___ | =-MNULL
NIlLe__ | @ = | =__ | @ = |

You will notice that each node in the list has fpanters, one to the next node and one
to the previous one - again, the ends of the tsstafined by NULL pointers. Also there
is no pointer to the start of the list. Instea@rénis simply a pointer to some position in

the list that can be moved left or right.

The reason we needed a start pointer in the orglimked list is because, having moved
on from one node to another, we can't easily maek jso without the start pointer, we
would lose track of all the nodes in the list that have already passed. With the doubly
linked list, we can move the current pointer baaklgaand forwards at will.

3.3.1. Creating Doubly Linked Lists

The nodes for a doubly linked list would be defirresdfollows:
struct node{

char name[20];

node *nxt; // Pointer to next node

node *prv; // Pointer to previous node

J§

36

node *current;
current = new node;
current->name = "Fred";
current->nxt = NULL;
current->prv = NULL;
We have also included some code to declare thenfiide and set its pointers to NULL.

It gives the following situation:
current

Fred

®___ | =HNULL

NULL<=—__ | @
We still need to consider the directions ‘forwanmli 'backward’, so in this case, we will
need to define functions to add a node to the sfalte list (left-most position) and the
end of the list (right-most position).

3.3.2. Adding a Node to a Doubly Linked List

void add_node_at_start (string new_name)

{ // Declare a temporary pointer and move it te sitart
node *temp = current;
while (temp->prv != NULL)
temp = temp->prv;
I/l Declare a new node and link it in
node *temp2;
temp2 = new node;
temp2->name = new_name; // Store the new nartieeinode
temp2->prv = NULL; /[This is the new dtaf the list
temp2->nxt = temp; /I Links to currentlis
temp->prv = temp?2;

}

void add_node_at_end ()
{// Declare a temporary pointer and move it te &mnd
node *temp = current;
while (temp->nxt != NULL)
temp = temp->nxt;
/I Declare a new node and link it in
node *temp2;
temp2 = new node;
temp2->name = new_name; // Store the new nartieeinode
temp2->nxt = NULL,; /I This is the new gtaf the list

37

temp2->prv = temp; /I Links to current lis
temp->nxt = temp2;
}
Here, the new name is passed to the appropriattidoras a parameter. We'll go through
the function for adding a node to the right-most ehthe list. The method is similar for
adding a node at the other end. Firstly, a temggrainter is set up and is made to march

along the list until it points to last node in tiss.
current

temp
Data Data Data
Start Ptr — ¥ e e s e o @ SINULL

After that, a new node is declared, and the namepsgd into it. The nxt pointer of this
new node is set to NULL to indicate that this nadkbe the new end of the list.

The prv pointer of the new node is linked into k& node of the existing list.

The nxt pointer of the current end of the listes ® the new node.

3.3.3. Deleting a Node From a Doubly Linked List

38

4. Stacks

A simple data structure, in which insertion andetieh occur at the same end, is termed
(called) a stack. Itis a LIFO (Last In First Ostjucture.

The operations of insertion and deletion are calelédH and POP
Push - push (put) item onto stack

Pop - pop (get) item from stack

Initial Stack Push(8) Pop
TOS=> |8
TOS=> 4 4| TOS=> 4
1 1 1
3 3 3
6 6 6

Our Purpose:
To develop a stack implementation that does naidito a particular data type or to a
particular implementatior

I mplementation:

Stacks can be implemented both as an array (cantgglist) and as a linked list. We want a
set of operations that will work with either typeimplementation: i.e. the method of
implementation is hidden and can be changed withffetting the programs that use them.

TheBasic Operations:

Push()
{
if there is room {
put an item on the top of the stack
else
give an error message
}
}
Pop()
{

if stack not empty {

39

return the value of the top item
remove the top item from theckta

}
else {
give an error message
}
}
CreateStack()
{

remove existing items from the stack
initialise the stack to empty

}

4.1. Array Implementation of Stacks: The PUSH operation

Here, as you might have noticed, addition of amel& is known as the PUSH operation.
So, if an array is given to you, which is suppogedct as a STACK, you know that it
has to be a STATIC Stack; meaning, data will owsvflf you cross the upper limit of the
array. So, keep this in mind.

Algorithm:

Step-1: Increment the Stack TOP by 1. Check whetheratisys less than the Upper
Limit of the stack. If it is less than the Uppeniit go to step-2 else report -"Stack
Overflow"

Step-2: Put the new element at the position pointed byTltb@

I mplementation:

static int stacklUPPERLIMIT];

int top= -1; /*stack is empty*/

main()

{
push(item):
}.

push(int item)

{

40

top = top + 1,
if(top < UPPERLIMIT)
stack[top] = item; [*step-1 & 2*/
else
cout<<"Stack Overflow";

}

Note:- In array implementation,we have taken TOP = -dignify the empty stack, as
this simplifies the implementation.

4.2. Array Implementation of Stacks: the POP operation

POP is the synonym for delete when it comes tokSta, if you're taking an array as the
stack, remember that you'll return an error mess&iack underflow", if an attempt is
made to Pop an item from an empty Stack. OK.

Algorithm

Step-1: If the Stack is empty then give the alert "StaoBerflow" and quit; or else go to
step-2
Step-2: a) Hold the value for the element pointed by t#T

b) Put a NULL value instead

c) Decrement the TOP by 1

I mplementation:

static int stacklUPPPERLIMIT];
int top=-1,;

main()

{
b.oped_val = pop();

.

int pop()
{
int del_val = 0;
if(top == -1)
cout<<"Stack underflow"; /*step-1*/
else

{

41

del_val = stack[top]; /*step-2*/
stack[top] = NULL;
top = top -1;

return(del_val);

}

Note: - Step-2:(b) signifies that the respective elemastiheen deleted.

4.3. Linked List Implementation of Stacks: the PUSH operation

It's very similar to the insertion operation in gnémic singly linked list. The only
difference is that here you'll add the new elenoeity at the end of the list, which means
addition can happen only from the TOP. Since a oyadist is used for the stack, the
Stack is also dynamic, means it has no prior uppetrset. So, we don't have to check
for the Overflow condition at all!

stack
L 12 l—i—| [1]:] |—>| 3z 2
d
bottom =
TOE
MW ——-—
[l
TOP —

(3]
In Step [1] we create the new element to be pushéte Stack.

In Step [2] the TOP most element is made to paimur newly created element.

In Step [3] the TOP is moved and made to poinh&last element in the stack, which is
our newly added element.

Algorithm

Step-1: If the Stack is empty go to step-2 or else gaep-8

Step-2: Create the new element and make your "stack” topd pointers point to it and
quit.

Step-3: Create the new element and make the last (top) rleshent of the stack to point
to it

Step-4: Make that new element your TOP most element byimgetke "top" pointer

point to it.

I mplementation:
struct node{

42

int item;

struct node *next;

}
struct node *stack = NULL; /*stack is initially eryp/
struct node *top = stack;
main()

{

push(item):
}.

push(int item)
{
if(stack == NULL) /[*step-1*/
{
newnode = new node /*step-2*/
newnode -> item = item;
newnode -> next = NULL;
stack = newnode;
top = stack;

else
{
newnode = new node; /*step-3*/
newnode -> item = item;
newnode -> next = NULL;
top ->next = newnode,;
top = newnode; [*step-4*/
}
}

4.4. Linked List Implementation of Stacks: the POP Operation

This is again very similar to the deletion openatio any Linked List, but you can only
delete from the end of the list and only one ain@}and that makes it a stack. Here,
we'll have a list pointer, "target”, which will p®inting to the last but one element in the
List (stack). Every time we POP, the TOP most elgmeall be deleted and "target” will
be made as the TOP most element.

43

stack In step[1] we got the "target” pointing to the Iast

L [3TQE, (e one node.
12 |~ o % 32 In step[2] we freed the TOP most element.
= L In step[3] we made the "target" node as our TOPtmos

{13/ r,
bottomn target o8 element.

Supposing you have only one element left in thelSta
then we won't make use of "target” rather we'letak
help of our "bottom" pointer. See how...

Algorithm:

Step-1: If the Stack is empty then give an alert mess&gack Underflow" and quit; or
else proceed

Step-2: If there is only one element left go to step-3lseestep-4

Step-3: Free that element and make the "stack”, "top"&ottom™ pointers point to
NULL and quit

Step-4: Make "target” point to just one element before TEP; free the TOP most
element; make "target" as your TOP most element

44

I mplementation:

struct node

{

int nodeval,

struct node *next;

}

struct node *stack = NULL; /*stack is initially eryp/
struct node *top = stack;

main()

{

int newvalue, delval;
push(newvalue);

delval = pop(); /*POP returns the deleted vahaenfthe stack*/

int pop()
{

int pop_val = 0;
struct node *target = stack;
if(stack == NULL) /*step-1*/
cout<<"Stack Underflow";
else
{
if(top == bottom) [*step-2*/
{
pop_val = top -> nodeval; /[*step-3*/
delete top;
stack = NULL;
top = bottom = stack;
}
else [*step-4*/
{
while(target->next != top) target = targ>next;
pop_val = top->nodeval,
delete top;
top = target;
target ->next = NULL,;
}

return(pop_val);

}

45

4.5. Applications of Stacks

4.5.1. Evaluation of Algebraic Expressions
e.0.4+5*5

simple calculator: 45
scientific calculator: 29 (correct)
Question:

Can we develop a method of evaluating arithmetpressions without having to

‘look ahead’ or ‘look back’? ie consider the quatréormula:
X = (-b+(b"2-4*a*c)"0.5)/(2* a)

where~ is the power operator, or, as you may remember it

b+ b* - dac
X =
2a

In it's current form we cannot solve the formulaheiut considering the ordering of the
parentheses. i.e. we solve the innermost paresthegtiand then work outwards also
considering operator precedence. Although we dortaturally, consider developing an
algorithm to do the same possible lomlex and inefficient. Instead

Re-expressing the Expression

Computers solve arithmetic expressions by restrimguhem so the order of each
calculation is embedded in the expression. Onceerted an expression can then be
solved in one pass.

Types of Expression

The normal (or human) way of expressing mathemlatigaressions is called infix form,
e.g.4+5*5. However, there are other ways of representingdmee expression, either by
writing all operators before their operands orraftem,

e.g.. 455*+

+4*55

This method is called Polish Notation (becauserniethod was discovered by the Polish
mathematician Jan Lukasiewicz).

46

When the operators are written before their opesaimds called therefix form
e.g.+4*55

When the operators come after their operandscalledpostfix form (suffix form or
rever se polish notation)

€.0.455* +

Thevaluable aspect of RPN (Rever se Polish Notation or postfix)
- Parentheses are unnecessary

« Easy for a computer (compiler) to evaluate an ar#tic expression
Postfix (Reverse Polish Notation)

Postfix notation arises from the concept of posieotraversal of an expression tree (see
Weiss p. 93 - this concept will be covered whenwok at trees).

For now, consider postfix notation as a way of sehuting operators in an expression
so that their operation is delayed until the cdrtiece.

Consider again the quadratic formula:
x = (-b+(b"2-4*a*) 0.5)/(2* a)
In postfix form the formula becomes:
xb@b2r4a*c*-05+2a*/=
where@ represents the unarypperator.

Notice the order of the operands remain the sarhéhbwoperands are redistributed in a
non-obvious way (an algorithm to convert infix tosgfix can be derived).

Purpose

The reason for using postfix notation is that ayaimple algorithm exists to evaluate
such expressions based on using a stack.

Postfix Evaluation

Consider the postfix expression :
6523+8* +3+*

47

Algorithm
initialise stack to empty;

while (not end of postfix expression) {
get next postfix item;
if(item is value)
push it onto the stack;
else if(item is binary operator) {
pop the stack to x;
pop the stack to y;
perform y operator x;
push the results onto the stack;
} else if (item is unary operator) {
pop the stack to x;
perform operator(x);
push the results onto the stack

}
}

The single value on the stack is the desired result.
Binary operatorst, -, *, /, etc.,

Unary operatorainary minus, squareroot, sin, cos, exp, etc.,

Sofor6523+8* +3+*

the first item is a value (6) so it is pushed athi® stack
the next item is a value (5) so it is pushed oheostack
the next item is a value (2) so it is pushed oheostack
the next item is a value (3) so it is pushed oh&ostack
and the stack becomes

48

TOS=> 3

the remaining items are nows * + 3 + *

So next a+" is read (a binary operator), sand2 are popped from the staand thei
sum ' is pushed onto the stack:

TOS=>| g

Next8 is pushed and the next item is the operator

TOS=>|g
5 TOS=>|40
5 5
6 6

(8, 5 popped4o pushed)

Next the operatc+ followed bys3:

TOS=>| 3
TOS=>|45 45
6 6

(40, 5 popped4s pushed3 pushed)

Next is operato+, so3 and4s are popped angb+3=48is pushed

49

TOS=>|48
6

Next is operato*, so48 andé are popped, angt48=288is pushed

TOS=> 288

Now there are no more items and there is a sirglgevon the stack, representing the
final answerss.

Note the answer was found with a single traverS#ie postfix expression, with the
stack being used as a kind of memory storing vatuasare waiting for their operands.

4.5.2. Infix to Postfix (RPN) Converson
Of course postfix notation is of little use unless there is an easy method to

convert standard (infix) expressions to postfix. Again a simple algorithm exists

that uses a stack:

Algorithm

initialise stack and postfix output to empty;
while(not end of infix expression) {
get next infix item
if(item is value) append item to pfix o/p
else if(item == ‘(‘) push item onto stack
else if(item ==) {
pop stack to x
while(x != (")
app.x to pfix o/p & pop stack to x

}else {

50

while(precedence(stack top) >= precedence(item))
pop stack to x & app.x to pfix o/p
push item onto stack

}
}

while(stack not empty)
pop stack to x and append x to pfix o/p

Operator Precedence (for this algorithm):

4 : ‘(" - only popped if a matching ‘)’ is found

3 : All unary operators

2:1*

The algorithm immediately passes values (operands) to the postfix expression,
but remembers (saves) operators on the stack until their right-hand operands are

fully translated.

51

eg., consider the infix expression a+b*c+(d*e+f)*g

Stack Output
ab
TOS=> | +
TOS=> | = abc
+
abc*+
TOS=> | +
TOS=> *
abc*+de
(
+
TOS=>
abc*+de*f
(
+
abc*+de*f+
+
TOS=>
abc*+de*f+g
TOS=> | *

52

empty abc*+de*f+g*+

53

4.5.3. Function Calls

When a function is called, arguments (includingrétteirn address) have to be passed to
the called function.

If these arguments are stored in a fixed memorg #ren the function cannot be called
recursively since the 1st return address wouldvesveritten by the 2nd return address
before the first was used:

10 call function abc(); /* retadrs = 11 */
11 continue;

90 function abc;
91 code;
92 if (expression)
93 call function abc(); /* retadrs = 94 */
94 code
95 return /* to retadrs */
A stack allows a new instance of retadrs for eadhte the function. Recursive calls on

the function are limited only by the extent of #tack.
10 call function abc(); /* retadrs1 = 11 */
11 continue;

90 function abc;

91 code;

92 if (expression)

93 call function abc(); /* retadrs2 = 94 */
94 code

95 return /* to retadrsn */

54

5.Queue

a data structure that has access to its data &btfeand rear.
operates on FIFO (Fast In First Out) basis.
uses two pointers/indices to keep tack of inforordtiata.
has two basic operations:
0 enqueue - inserting data at the rear of the queue
0 dequeue —removing data at the front of the queue

dequeue enqueue
Front Rear

Example:

Operation Content of queue

Enqueue(B) B

Enqueue(C) B, C

Dequeue() C

Enqueue(G) C,G

Enqueue (F) C,GF

Dequeue() G, F

Enqueue(A) G FA

Dequeue() F, A

5.1. Smple array implementation of enqueue and dequeue oper ations

Analysis
Consider the following structure: int Num[MAX_SEX.
We need to have two integer variables that tell:
- the index of the front element
- the index of the rear element
We also need an integer variable that tells:
- the total number of data in the queue

int FRONT =-1,REAR =-1;

55

int QUEUESIZE=0;

56

* To enqueue data to the queue
o check if there is space in the queue
REAR<MAX_ SIZE-1?
Yes: [- Increment REAR
- Store the data in Num[REAR]
- Increment QUEUESIZE

FRONT ==-1?
Yes: - Increment FRONT
No: - Queue Overflow

* To dequeue data from the queue
o check if there is data in the queue
QUEUESIZE >0 ?
Yes: |- Copy the data in Num[FRONT]
- Increment FRONT
- Decrement QUEUESIZE
No: - Queue Underflow

Implementation
const int MAX_SIZE=100;
int FRONT =-1, REAR =-1;
int QUEUESIZE = 0;

void enqueue(int x)
{
if(Rear<MAX_SIZE-1)
{
REAR++;
NUm[REAR]=x;
QUEUESIZE++;
if(FRONT ==-1)
FRONT++;
}
else
cout<<"Queue Overflow";

int dequeue()

int x;

if(QUEUESIZE>0)

{
Xx=Num[FRONT];
FRONT++;
QUEUESIZE-;

}

else
cout<<"Queue Underflow";
return(x);

57

5.2. Circular array implementation of enqueue and dequeue oper ations

A problem with simple arrays is we run out of spaeen if the queue never reaches the
size of the array. Thus, simulated circular arr@ysvhich freed spaces are re-used to
store data) can be used to solve this problem.

Example: Consider a queue with MAX_SIZE =4

Simple array Circular array
Operation
Content of| Contentof QUEUE Message| Content g€ontent o QUEUE Message
the array | the Queug SIZE the array | the queue SIZE
Enqueue(B)| B | | |B 1 B! | |B 1
Enqueue(C)| BC: | |[BC 2 B C: : |BC 2
Dequeue() ¢ o |C 1 . C I |C 1
Enqueue(G)| : €G: |CG 2 1 GG |CG 2
Enqueue (F)| | €G: F|CGF 3 . GG F|ICGF 3
Dequeue() .+ GF|GF 2 .+ QF|GF 2
Enqueue(A)| | | GF|GF 2 Overflow | A |G F|GFA 3
Enqueue(D)| | | GF|GF 2 Overflow | AD!G FIGFAD | 4
Enqueue(C)| | | GF|GF 2 Overflow | A D G! F|GFAD 4 Overflow
Dequeue() N i = 1 A D! | F|FAD 3
EnqueueH)| | ' | H 1 Overflow A D' H! F|FADH 4
Dequeue () R Empty 0 A H: |ADH 3
Dequeue() o Empty 0 Underflow : :[BI: |DH 2
Dequeue() P Empty 0 Underflow : : ‘H|H 1
Dequeue() 7 U | Empty | O Underflowy | | Empty] 0
Dequeue() b Empty 0 Underflow | | | Empty 0 Undmafl

The circular array implementation of a queue withd SIZE can be simulated as
follows:

Analysis
Consider the following structure: int Num[MAX_SExX.

We need to have two integer variables that tell:
- the index of the front element
- the index of the rear element

58

We also need an integer variable that tells:
- the total number of data in the queue
int FRONT =-1,REAR =-1;
int QUEUESIZE=0;

* To enqueue data to the queue
o check if there is space in the queue
QUEUESIZE<MAX_SIZE ?
Yes: (- Increment REAR
REAR = = MAX_SIZE ?
Yes: REAR =0
< - Store the data in Num[REAR]
- Increment QUEUESIZE

FRONT ==-1?
_ Yes:-Increment FRONT
No: - Queue Overflow

* To dequeue data from the queue
o check if there is data in the queue
QUEUESIZE >0 ?
Yes: (- Copy the data in Num[FRONT]
- Increment FRONT
FRONT = = MAX_SIZE ?
Yes: FRONT =0
- Decrement QUEUESIZE
No: - Queue Underflow

Implementation
const int MAX_SIZE=100;
int FRONT =-1, REAR =-1;
int QUEUESIZE = 0;

void enqueue(int x)
{
if(QUEUESIZEXMAX_SIZE)
{
REAR++;
if(REAR = = MAX_SIZE)
REAR=0;
Num[REAR]=x;
QUEUESIZE++;
if(FRONT ==-1)
FRONT++;
}
else
cout<<"Queue Overflow";

59

int dequeue()

int x;
if(QUEUESIZE>0)

{
Xx=Num[FRONT];
FRONT++;
if(FRONT = = MAX_SIZE)
FRONT = 0;
QUEUESIZE-;

}

else
cout<<"Queue Underflow";
return(x);

5.3. Linked list implementation of enqueue and dequeue oper ations

Enqueue- is inserting a node at the end of a litiksed
Dequeue- is deleting the first node in the list

5.4. Deque (pronounced as Deck)

- is a Double Ended Queue

- insertion and deletion can occur at either end

- has the following basic operations
EnqueueFront — inserts data at the front ofite |
DequeueFront — deletes data at the front ofisthe |
EnqueueRear — inserts data at the end of the list
DequeueRear — deletes data at the end of the list

- implementation is similar to that of queue

- is best implemented using doubly linked list

| T

Front Rear

DequeueFront EnqueueFront DequeueRei EnqueueRear

60

5.5. Priority Queue

- is a queue where each data has an associatetdtay provided at the time of
insertion.

- Dequeue operation deletes data having highestityrin the list

- One of the previously used dequeue or enqueuatipes has to be modified

Example: Consider the following queue of persohen females have higher
priority than males (gender is the key to give pty).

Abebe Alemu | Astel Belay Kedir Meror Yonas

Male Male Femalt | Male Male Femalt | Male
Dequeue()- deletes Aster

Abebe Alemu | Belay Kedir Meror | Yonas

Male Male Male Male Femal¢ | Male
Dequeue()- deletes Meron

Abebe Alemu | Belay Kedir Yonas

Male Male Male Male Male

Now the queue has data having equal priority amplielee operation deletes the
front element like in the case of ordinary queues.

Dequeue()- deletes Abebe

Alemu | Belay Kedir Yonas

Male Male Male Male
Dequeue()- deletes Alemu

Belay Kedir Yonas

Male Male Male

Thus, in the above example the implementation eidéqueue operation need to be
modified.

5.5.1. Demerging Queues
- is the process of creating two or more queus® fa single queue.
- used to give priority for some groups of data

Example: The following two queues can be createchfthe above priority queue.

Astel

Meror

Abebe

Alemu

Belay

Kedir

Yonas

Femalt

Femalt

Male

Male

Male

Male

Male

61

Algorithm:
create empty females and males queue

while (PriorityQueue is not empty)

Data=DequeuePriorityQueue(); // delete data at thetfron
if(gender ofData is Female)

EnqueueFemalbgta);
else

EnqueueMaléfata);

}

5.5.2. Merging Queues
- is the process of creating a priority queue fitarm or more queues.
- the ordinary dequeue implementation can be useelete data in the newly
created priority queue.

Example: The following two queues (females queagtiigher priority than the
males queue) can be merged to create a priorityeque

Astel Meror Abebe Alemu Belay Kedir Yonas
Femal¢ | Femalt Male Male Male Male Male
Astel Meror | Abebe Alemu | Belay Kedir Yonas
Femalt | Femal« | Male Male Male Male Male

Algorithm:

create an empty priority queue

while(FemalesQueue is not empty)
EnqueuePriorityQueue(DequeueFemalesQueue());

while(MalesQueue is not empty)
EnqueuePriorityQueue(DequeueMalesQueue());

It is also possible to merge two or more prioriteges.
Example: Consider the following priority queuesl auppose large numbers
represent high priorities.

ABC | CDE | DEF | FGH | HIJ
52 41 35 16 12
BCD | EFC | GHI IJK JKL
47 32 13 10 7

Thus, the two queues can be merged to give th@afilg priority queue.

62

ABC | BCD | CDE | DEF | EFC | FGH | GHI HIJ IJK JKL

52 47 41 35 32 16 13 12 10 7

5.6. Application of Queues

i. Print server- maintains a queue of print jobs
Print()

{

EnqueuePrintQueue(Document)

}
EndOfPrint()
{

}

il. Disk Driver- maintains a queue of disk input/outpedquests

DequeuePrintQueue()

iii. Task scheduler in multiprocessing system- maintaiitgity queues of
processes

iv. Telephone calls in a busy environment —maintaigseue of telephone calls

V. Simulation of waiting line- maintains a queue ofgoas

6. Trees

A tree is a set of nodes and edges that connest glanodes that connect pairs of
nodes. It is an abstract model of a hierarchicakctire. Rooted tree has the following
structure:

e One node distinguished as root.

» Every node C except the root is connected fromtéxather node P. P is C's

parent, and C is one of C's children.
* There is a unique path from the root to the eadeno
* The number of edges in a path is the length op#tb.

6.1. Tree Terminologies

Consider the following tree.

Root a node with out a parent. > A

Internal nodea node with at least one chileA, B, F, I, J

External (leaf) node a node without a chile C, D, E, H, K, L, M, G

Ancestors of a node parent, grandparent, grand-grandparent, etcoie.
Ancestors of K> A, F, |

Descendants of a nadehildren, grandchildren, grand-grandchildrenadte node.
Descendantsof F > H, I, J,K, L, M

Depth of a nodenumber of ancestors or length of the path froenrthot to the node.
Depth of H 22

Height of a treedepth of the deepest nod2.3

Subtreea tree consisting of a node and its descendants.

Binary tree a tree in which each no ildedled left child and right

child.

Full binary treea binary tree where each node has either 0 bil@en.

64

Balanced binary treea binary tree where each node except the les#sbds left and
right children and all the leaves are at the sawell

Complete binary treea binary tree in which the length from the rtmany leaf node is
either h or h-1 where h is the height of the tiides deepest level
should also be filled from left to right.

65

Binary search tree (ordered binary trea)binary tree that may be empty, but if it i$ no
empty it satisfies the following.

» Every node has a key and no two elements havethe &ey.

* The keys in the right subtree are larger than #ys kn the root.
* The keys in the left subtree are smaller than #ys kn the root.
* The left and the right subtrees are also binarychetaees.

6.2. Data Structureof aBinary Tree

struct DataModel

{

Declaration of data fields
DataModel * Left, *Right;

|3
DataModel *RootDataModelPtr=NULL;

66

6.3. Operationson Binary Search Tree

Consider the following definition of binary seartge.
struct Node
L
int Num;
Node * Left, *Right;
I3
Node *RootNodePtr=NULL,;

6.3.1. Insertion
When a node is inserted the definition of binargrek tree should be preserved.
Suppose there is a binary search tree whose rolet isgointed by RootNodePtr and
we want to insert a node (that stores 17) pointethNodePtr.

Case 1: Thereis no data in the tree (i.e. Roo#Rtrds NULL)
- The node pointed by InsNodePtr should be madeoibtenode.

InsNodePi RootNodePtr RootNodeP!

%I g ’ %
Case 2: There is data

- Search the appropriate position.
- Insert the node in that position.

InsNodePt RootNodePtr RootNodeP!

InsertBST(RootNodePtr, InsNodeP#)

Function call
if(RootNodePtr = = NULL)
RootNodePtr=InsNodePtr;
else
InsertBST(RootNodePtr, InsNodePtr);

Implementation

void InsertBST(Node *RNP, Node *INP)
{
/IRNP=RootNodePtr and INP=InsNodePtr
int Inserted=0;
while(Inserted = =0)
i{f(RNP->Num > INP->Num)
if(RNP->Left = = NULL)

RNP->Left = INP;

Inserted=1;
else
RNP = RNP->Left;
{else
if(RNP->Right = = NULL)
RNP->Right = INP;
Inserted=1;
else _
} RNP = RNP->Right;

}
}

A recursive version of the function can also beegias follows.
void InsertBST(Node *RNP, Node *INP)
i{f(RNP->Num>INP->Num)

if(RNP->Left==NULL
RNP->Left = INP;

else
InsertBST(RNP->Left, INP);
?Ise
if(RNP->Right==NULL)
RNP->Right = INP;
else
) InsertBST(RNP->Right, INP);

68

6.3.2. Traversing
Binary search tree can be traversed in three ways.
a. Pre order traversal - traversing binary tree indtger of parent, left and right.
b. Inorder traversal - traversing binary tree in theéeo of left, parent and right.
c. Postorder traversal - traversing binary tree inditer ofleft, right andparent.

Example:

RootNodeP!

Preorder traversal - 10, 6, 4, 8, 7, 15, 14, 1218, 18, 16, 17, 19
Inorder traversal - 4,6,7,8,10,11, 12, 13,154 16, 17, 18, 19
==> Used to display nodes in ascending
order.
Postorder traversal- 4,7,8,6,11,13,12, 7416, 19, 18, 15, 10

6.3.3. Application of binary treetraversal

- Store values on leaf nodes and operators omaitaeodes

Preorder traversal - used to generate mathematipaéssion in prefix
notation.

Inorder traversal - used to generate mathemadiqalession in infix
notation.

Postorder traversal - used to generate matherhakipeession in postfix
notation.

Example:

e Preorder traversal - +—A*B C + D/ EF Prefix notation
e Inorder traversal - A-B*C + D + E /P Infix notation

Postorder traversal - A B C *—D E F / +> Postfix notation

@ o
@@G 69

Function calls
Preorder(RootNodePtr);
Inorder(RootNodePtr);
Postorder(RootNodePtr);

Implementation

void Preorder (Node *CurrNodePtr)

if(CurrNodePtr ! = NULL)

{
cout<< CurrNodePtr->Num;
Preorder(CurrNodePtr->Left);
Preorder(CurrNodePtr->Right);
}

}

void Inorder (Node *CurrNodePtr)

{
if(CurrNodePtr ! = NULL)

{
Inorder(CurrNodePtr->Left);
cout<< CurrNodePtr->Num:;
Inorder(CurrNodePtr->Right);
}

}

void Postorder (Node *CurrNodePtr)

{
if(CurrNodePtr ! = NULL)

{
Postorder(CurrNodePtr->Left);
Postorder(CurrNodePtr->Right);
cout<< CurrNodePtr->Num;

}

70

/I or any operationtio& node

/I or any operationtio® node

/I or any operationtio& node

6.3.4. Sear ching

To search a node (whose Num value is Number) inarypsearch tree (whose root
node is pointed by RootNodePtr), one of the thr@estsal methods can be used.

Function call
ElementExists = SearchBST (RootNodePtr, Number);
/I ElementEXists is a Boolean variable definedbas! ElementExists = false

Implementation

bool SearchBST (Node *RNP, int x)

{
if(RNP == NULL)
return(false);
else if(RNP->Num = = x)
return(true);
else if(RNP->Num > x)
return(SearchBST(RNP->Left, x));
else
return(SearchBST(RNP->Right, x));
}

When we search an element in a binary search doeeetimes it may be necessary
for the SearchBST function to return a pointer thaints to the node containing the
element searched. Accordingly, the function hasetonodified as follows.

Function call
SearchedNodePtr = SearchBST (RootNodePtr, Number);
/I SearchedNodePtr is a pointer variable defireetlade
*SearchedNodePtr=NULL

Implementation

Node *SearchBST (Node *RNP, int x)

If((RNP = = NULL) || (RNP->Num = = x))
return(RNP);

else if(RNP->Num > x)
return(SearchBST(RNP->Left, x));

else
return(SearchBST (RNP->Right, x));

71

6.3.5. Deletion

To delete a node (whose Num value is N) from birsagrch tree (whose root node is
pointed by RootNodePtr), four cases should be densd. When a node is deleted
the definition of binary search tree should be @nesd.

Consider the following binary search tree.

RootNodePtr

Case 1: Deleting a leaf node (a node having ndla.g. 7

RootNodePtr
RootNodePtr

@ Delete 7=> @

72

Case 2: Deleting a node having only one child, 2.9
Approach 1 Deletion by merging — one of the following isr#o

» If the deleted node is the left child of its parant the deleted node has only the left
child, the left child of the deleted node is mauke left child of the parent of the
deleted node.

» If the deleted node is the left child of its parant the deleted node has only the right
child, the right child of the deleted node is méue left childof the parent of the
deleted node.

» If the deleted node is the right child of its pareand the node to be deleted has only
the left child, the left child of the deleted nadenade the right child of the parent of
the deleted node.

» If the deleted node is the right child of its parand the deleted node has only the
right child, the right child of the deleted nodemadethe right childof the parent of
the deleted node.

RootNodePtr
RootNodePtr

Delete 2=
a9 (19

Approach 2 Deletion by copying- the following is done
* Copy the node containing the largest element indfi€or the smallest element in
the right) to the node containing the element tadleted
* Delete the copied node RootNodePtr
RootNodePtr

Delete 2>
a9 (19

Case 3: Deleting a node having two children, &.g.

Approach 1 Deletion by merging — one of the following isr#o
» If the deleted node is the left child of its paremte of the following is done
0 The left child of the deleted node is made thedhitd of the parent of the deleted
node, and
0 The right child of the deleted node is made thbtrahild of the node containing
largest element in the left of the deleted node
OR
0 The right child of the deleted node is made thedeild of the parent of the
deleted node, and
0 The left child of the deleted node is made thedhitd of the node containing
smallest element in the right of the deleted node
» If the deleted node is the right child of its pdreme of the following is done
0 The left child of the deleted node is made thetraifild of the parent of the
deleted node, and
0 The right child of the deleted node is made thbtrahild of the node containing
largest element in the left of the deleted node
OR
o The right child of the deleted node is made thbtrahild of the parent of the
deleted node, and
0 The left child of the deleted node is made thedhitd of the node containing
smallest element in the right of the deleted node

RootNodePtr RootNodePtr

Delete 6 =2

74

RootNodePtr
RootNodePtr

Delete 6= @

Approach 2 Deletion by copying- the following is done

* Copy the node containing the largest element indfi€or the smallest element in
the right) to the node containing the element tadleted

» Delete the copied node

RootNodePtr RootNodePtr

Delete 6=

Delete 6=

Case 4. Deleting the root node, 10
Approach 1 Deletion by merging- one of the following is done

» If the tree has only one node the root node poistaerade to point to nothing
(NULL)
» If the root node has left child
o the root node pointer is made to point to thedbiid
o the right child of the root node is made the rigiitd of the node containing the
largest element in the left of the root node
* If root node has right child
o the root node pointer is made to point to the ridhid
o the left child of the root node is made the leftatbf the node containing the
smallest element in the right of the root node
RootNodePtr RootNodePtr

RootNodePtr

i_ _____ E- ___:j @Y’ Delete 10> G

v Delete 10>

76

Approach 2 Deletion by copying- the following is done

» Copy the node containing the largest element ingtig¢or the smallest element in
the right) to the node containing the element tadleted

* Delete the copied node

RootNodePtr
RootNodePtr

)@ Delete 10 9
(‘ @ (8) (19

‘ ‘@ Delete 10> @

Function call:
if ((RootNodePtr->Left==NULL)&&(RootNodePtr->RightNULL) && (RootNodePtr-
>Num==N))
{ /I the node to be deleted is the root node mgwvio child
RootNodePtr=NULL,;
delete RootNodePtr;
}

else

77

DeleteBST(RootNodePtr, RootNodePtr, N);

Implementation(Deletion by copying)

void DeleteBST(Node *RNP, Node *PDNP, int x)

{
Node *DNP; // a pointer that points to the curhgdileted node
/[PDNP is a pointer that points to the parentenofdcurrently deleted node
if(RNP==NULL)
cout<<"Data not found\n";
else if (RNP->Num>x)
DeleteBST(RNP->Left, RNP, x);// delete the eletrarthe left subtree
else if(RNP->Num<x)
DeleteBST(RNP->Right, RNP, x);// delete the elatme the right subtree
else
{
DNP=RNP;
if((DNP->Left==NULL) && (DNP->Right==NULL))
if (PDNP->Left==DNP)
PDNP->Left=NULL;
else
PDNP->Right=NULL;
delete DNP;
}
else
if(DNP->Left!=NULL) //find the maximum in the fe
{
PDNP=DNP;
DNP=DNP->Left;
while(DNP->Right!=NULL)
PDNP=DNP;
DNP=DNP->Right;
}
RNP->Num=DNP->Num;
DeleteBST(DNP,PDNP,DNP->Num);
else //find the minimum in the right
PDNP=DNP;
DNP=DNP->Right;
while(DNP->Left!l=NULL)
PDNP=DNP;
DNP=DNP->Left;
}
RNP->Num=DNP->Num;
DeleteBST(DNP,PDNP,DNP->Num);
}
}
}
}

78

7. Advanced Sorting and Sear ching Algorithms

7.1. Shell Sort

Shell sort is an improvement of insertion soris Itleveloped by Donald Shell in 1959.
Insertion sort works best when the array elememrgtsarted in a reasonable order. Thus,
shell sort first creates this reasonable order.

Algorithm:
1. Choose gapupetween elements to be partly ordered.
2. Generate a sequence (called increment sequeQ@@hg..., &, th Where for
each sequence, d\[j]<=A[j+g] for 0<=j<=n-1-g and k>=i>=1

It is advisable to chooseg gn/2 and g = g/2 for k>=i>=1. After each sequencgids
done and the list is said to besgrted. Shell sorting is done when the listisorted
(which is sorted using insertion sort) and A[j]<§Al] for 0<=j<=n-2. Time complexity

is O(n*?).

Example: Sort the following list using shell soigaithm.

(518[2[4]1][3] 9] 7[6] 0

Choose g=5 (n/2 where n is the number of elements =10)

Sort (5, 3) 3/ 8| 2| 4 1] 5 9 7 6 0
Sort (8, 9) 3/ 8| 2| 4 1] 5 9 7 6 0
Sort (2, 7) 3/ 8| 2| 4 1] 5 9 7 6 0
Sort (4, 6) 3/ 8| 2| 4 1] 5 9 7 6 0
Sort (1, 0) 3| 8/ 2| 4 0 5 9 717 6 1
=> 5- sorted list 3| 8/ 2| 4 0 5 9 7 6 1
Choose g=3

Sort (3, 4,9, 1) 1/ 8 21 3 0 5 4 7 6 B9
Sort (8, 0, 7) 1] 0] 2| 3| 7/ 5 4 ¢ 5> 9
Sort (2, 5, 6) 1] 0] 2| 3| 7/ 5 4 & 5 9
=> 3- sorted list 11 0, 2/ 3] 77 5 4 8 6 9

Choose g=1 (the same as insertion sort algorithm)

Sort(1,0,2,3,7,5,4,8,6,9) 0 1 2 [3 [4 [5 [6 [B][9]

79

= 1-sorted (shellsorted)list 0 1 2 B WK [5 [6 [7 [8 |9

7.2. Quick Sort

Quick sort is the fastest known algorithm. It udesde and conquer strategy and in the
worst case its complexity is O (n2). But its expeatomplexity is O(nlogn).

Algorithm:

1. Choose a pivot value (mostly the first elemenakeh as the pivot value)

2. Position the pivot element and partition the lstisat:
» the left part has items less than or equal to ihet palue
» theright part has items greater than or equdié¢qitvot

value
3. Recursively sort the left part
4. Recursively sort the right part

The following algorithm can be used to position\apvalue and create partition.
Left=0;
Right=n-1; // n is the total number of elementsha list
PivotPos=Left;
while(Left<Right)
if(PivotPos==Left)
if(Data[Left]>Data[Right])

swap(data[Left], Data[Right]);
PivotPos=Right;

Left++;
}
else
Right--;
}
else
if(Data[Left]>Data[Right])
swap(data[Left], Data[Right]);
PivotPos=Left;
Right--;
}
else
Left++;
}

80

Example: Sort the following list using
quick sort algorithn

[5/8]2[4]1]3[9]7]6]0]

[5]8]2[4]1]3[9]7]6]0]

Left
Pivol

018|2|4|1|3|9|7|6|5

Right

Left

015|/2|4|1,3]9|7|6|8

!

Left
Pivol

Left
Pivol

Left
Pivol

Left
Pivol

Left
Pivol

Left
Pivol

Left Right

Pivot

Left Right

Pivol

81

0132|4159 |7|6|8
Left Right
Pivol
0|13|2(4(1|5]9(7|6]|8
Left Right Left Right
Pivol Pivol
0|13|2(4(1|5]|8[7|6]9
Left Right Left Right
Pivot Pivol
013(2(4|1|5]8|7|6]9
Left Right Left Right
Pivol Pivol
0|13|2(4(1|5]|8]7]|6]9
Left Right Left Right
Pivol Pivol
03241 5(6]|7[8]9
Left Right Left Right
Pivol Pivot
0Il112(4|3|5(6|7|8]| 9
Left Right LeftRight
Pivol Pivol
0Il112(4)|3(5(6]| 78|29
Left Right
Pivol
0Il112(3|4(5|6]| 78|29
Left Right
Pivol
oIl1123|4)|5|61|7]|8]°9
Left Right
Pivot
Ol1(2|3|4(5|6]|7|8]°9

7.3. Heap Sort

Heap sort operates by first converting the ligbia heap tree. Heap tree is a binary tree
in which each node has a value greater than b®tthitdren (if any). It uses a process
called "adjust to accomplish its task (buildingemp tree) whenever a value is larger than
its parent. The time complexity of heap sort isl@gn).

Algorithm:
1. Construct a binary tree
. The root node corresponds to Data[0].
. If we consider the index associated with a paréicabde to

bei, then the left child of this node correspondshi®¢lement with index
2*i+1 and the right child corresponds to the elemaetit iwdex 245+2. If any
or both of these elements do not exist in the atfen the corresponding
child node does not exist either.
2. Construct the heap tree from initial binary treagsadjust” process.
3. Sort by swapping the root value with the lowegthtimost value and deleting the
lowest, right most value and inserting the deletde in the array in it proper
position.

Example: Sort the following list using heap sdgoaithm.

(5 18[2[4a]1[3] 9] 7] 6] ¢

Construct the initial binary tree Construct the heap tr

RootNodeP RootNodeP

i 40

Swap the root node with the lowest, right most naxleé delete the lowest, right most
value; insert the deleted value in the array iprtgper position; adjust the heap tree;
and repeat this process until the tree is empty.

<éRootNodeM <éRootNodePw
(8) o] (8)
OO . @ @
@ ©%) @ ©

‘RootNodeM
(8)
(7)

@ ©
<%RootNodePw

<éRootNodeM

é)RootNodePw

<éRoowNodePt

71819
(8)

<éRootNodeM

<éRootNodeM

RootNodeP1

éRootNodeM

RootNodeP1

£

S

RootNodeP! <éRootNodeM

éb & o

RootNodeP!
e RootNodeP1
2|13|4|5(6|7|8]|9

¢ o ol

RootNodeP1
RootNodeP1
/ 1{2|3|4|5|6[7|8]|9

<J(bRootNoolan ol1]2]3l4]5]617]8]9 %RootNodepw

84

7.4. Merge Sort

Like quick sort, merge sort uses divide and congtrategy and its time complexity is
O(nlogn).

Algorithm:
1. Divide the array in to two halves.
2. Recursively sort the first n/2 items.
3. Recursively sort the last n/2 items.
4. Merge sorted items (using an auxiliary array).

Example: Sort the following list using merge salgorithm.

(518 f2[a]1[3] 9] 7] 6] ¢

4 [5/8]2[4]1]3[9]7]6]0]

Division phase <

Sorting and merging phas2

86

